El potencial terapéutico de las células madre. Eticidad del uso de las células madre embrionarias


  • Eduardo Rodríguez Yunta Organización Panamericana de la Salud




Sin resumen disponible


Los datos de descargas todavía no están disponibles.


Cargando métricas ...

Biografía del autor/a

Eduardo Rodríguez Yunta, Organización Panamericana de la Salud

Dr. En Biología Genética e Investigador


Ver Thomson, J. A., Itskovitz Eldor, J., Shapiro, S. S., Walknitz, M. A., Swiergiel, J. J.,

Marshall, V. S., Jones, J. M. (1998). Embryonic stem cell lines derived from human blastocysts,

Science 282: 1145-1147.

Shamblott, M. J., Axelman, J. Wang, S., Bugg, E. M., Littlefield, J. W., Donovan, P. J.,

Blumenthal, P. D., Huggins, G. R., Geathart, J. D. (1998). Derivation of pluripotent stem cells

from cultured human primordial germ cells. Proceedings National Academy of Science U.S.A.

: 13726-13731.

Ver Bjornson, C. R. R., Rietze, R. L., Reynolds, B. A., Magli, M. C., Vescovi, A. L. (1999).

‘Turning brain into blood: A hematopoietic fate adopted by adult neural stem cells in vivo’.

Science 283: 534-537.

Ver Petersen, B. E., Bowen, W. C., Patrene, K. D., Mars, W. M., Sullivan, A. K., Murase, N.,

Boggs, S. S., Greenberger, J. S., Goff, J. P. (1999). Bone marrow as a potential source of hepatic

oval cells. ‘Science’ 284: 1168-1170.

Krause, D. S., Theise, N. D., Collector, M. I., Herogariu, O., Gardner, R., Neutzel, S., Sharkis,

S. J. (2001). Multi-organ, multi-lineage engraftment by a single bone marrow-derived stem cell.

‘Cell’ 105: 369-377.

Ver Pittenger, M. F., MacKay, A. M., Beck, S. C., Jaiswal, R. K., Douglas, R., Mosca, J. D.,

Moorman, M. A., Simonetti, D. W., Craig, S., Marshak, D. R. (1999). Multilineage potential of

adult human mesenchymal stem cells. ‘Science’ 284: 143-147.

Toma, J. G., Akhavan, M., Fernandes, K. J., Barnabe-Heider, F., Sadikot, A., Kaplan, D. R.,

Miller, F. D. (2001). ‘Isolation of multipotent adult stem cells from the dermis of mammalian’

skin. Nature Cell Biology 3: 778-784.

Bongso, A., Fong, C. Y., Ng, S. C., Ratnam, S. (1994). ‘Isolation and culture of inner cell mass

cells from human blastocysts’. Human Reproduction 9: 2110-2117.

Itskovitz- Eldor, J., Schukdner, M., Karsenti, D., Eden, A., Yanuka, O., Amit, M., Soreq, H.,

Benvenisty, N. (2000). ‘Differentiation of human embryonic stem cells into embryoid bodies

comprising the three embryonic germ layers’. Molecular Medicine 6: 88-95.

Kaufman, D. S., Hanson, E. T., Lewis, R. L., Auerbach, R., Thomson, J. A. (2001).

‘Hematopoietic colony forming cells derived from human embryonic stem cells’. Proceedings

National Academy of Science USA 98: 10716-10721.

Shamblott, M. J., Axelman, J., Littlefield, J. W., Blumenthal, P. D., Huggins, G. R., Cui, Y.,

Cheng, L., Geathart , J. D. (2001). ‘Human embryonic germ cell derivatives express a broad

range of developmentally distinct markers and proliferate extensively in vitro’. Proceedings

National Academy of Science U.S.A. 98: 113-118.

Ver Thomson, J. A., Itskovitz Eldor, J., Shapiro, S. S., Waknitz, M. A., Swiergiel, J. J.,

Marshall, V. S., Jones, J. M. (1998). ‘Embryonic stem cell lines derived from human

blastocysts’. Science 282: 1145-1147.

Ver Orlic, D., Kajstura, J., Chimenti, S., Jakoniuk, I., Anderson, S. M., Li, B., Pickel, J.,

McKay, R., Nadal-Ginard, B., Bodine, D. M., Lerl, A., Anversa, P. (2001). ‘Bone marrow cells

regenerate infarcted myocardium’. Nature 410: 701-705.

Ver Kocher , A. A., Schuster, M. D., Szabolcs, M. J., Takuma, S., Burkhoff, D., Wang, J.,

Homma, S., Edwards, N. M., Itescu, S. (2001). ‘Neurovascularization of ischemic myocardium

by human bone-marrow-derived angioblasts prevents cardiomyocites apoptosis, reduces

remodeling and improves cardiac function’. National Medicine 7: 430-436.

Beltrami, A. P., Urbanok, K., Kasjtura, J., Yan, S. M., Finato, N., Bussani, R., Nadal-Ginard,

B., Silvestri, F., Leri, A., Beltrami, C. A., Anversa, P. (2001). ‘Evidence that human cardiac

myocites divide after myocardial infarction’. New England Journal of Medicine 344: 1750-1757.

Ver Itskovitz-Eldor, J., Schuldner, M., Karsenti, D., Eden, A., Yanuka, O., Amit, M., Soreq,

H., and Benvenisty, N. (2000). ‘Differentiation of human embryonic stem cells into embryoid

bodies comprising the three embryonic germ layers’. Molecular Medicine 6: 88-95; y Kehat, I.,

Kenyagin-Karsenti, D., Druckmann, M., Segev, H., Amit, M., Gepstein, A., Livine, E., Binah,

O., Itskovitz-Eldor, J., Gepstein, L (2001). ‘Human embryonic stem cells can diffrentiate into

myocites portraying cardiiomyocitic structural and functional properties’. Journal Clinical

Investigation 108: 407-414.

Ver McKay, R. (1997). ‘Stem cells in the central nervous system’. Science 276: 66-71; y

Shihabuddin, L. S., Palmer, T. D., Gage, F. H. (1999). The Search for neural progenitor cells:

prospects for the therapy of neurodegenerative disease. Molecular Medicine Today 5: 474-480.

Ver Conti, L., Sipione, S., Magrassi, L., Bonfanti, L., Rigamonti, D., Pettirossi, V.,

Peschanski, M., Haddad, B., Pelicci, P, Milanesi, G., Pelicci, G., Cattaneo, E. (2001).

‘Hematopoietic colony-forming cells derived form human embryonic stem cells’. Proceedings

National Academy of Science U.S.A. 98: 10716-10721.

Ver Soria, B., Roche, E., Berna, G., Leon-Quinto, T., Reig, J. A., Martin, F. (2000). ‘Insulinsecreting

cells derived from embryonic stem cells normalize glycemia in streptozotocin-induced

diabetic mice’. Diabetes 49: 157-162.

Ver Assady, S., Maor, G., Amit, M., Itskovitz-Eldor, J., Skorecki, K. L., Tzukerman, M.

(2001). ‘Insulin production by human embryonic stem cells’. Diabetes 50: 1691-1697.

Ver Traynor, A. E., Schroeder, J., Rosa, R. M., Cheng, D., Stefka, J., Mujais, S., Baker, S.,

Burt, R. K. (2000). ‘Treatment of severe systemic lupus erythematosus with high-dose

chemotherapy and haematopoietic stem-cell transplantation: a phase I study’. Lancet 356: 701-

Ver Kim, S. H., Kim, S., Evans, C. H., Ghivizzani, S. C., Oligino, T., Robbins, P. D. (2001).

‘Effective treatment of established murine collagen-induced arthitis by systemic administration

of dendritic cells genetically modified to express IL-4’. Journal of Inmunology 166: 3499-3505.

Ver Fairchild, P. J., Brook, F. A., Gardner, R. L., Graca, L., Strong, V., Tone, Y., Tone, M.,

Nolan, K. F., Waldmann, H. (2000). ‘Directed differentiation of dendritic cells from mouse

embryonic stem cells’. Current Biology 10: 1515-1518.

Ver Shiels, P. G., Kind, A. J., Campbell. K. H. S., Waddington, D., Wilmut, I., Colman, A.,

Schnieke, A. E. (1999). ‘Analysis of telomere lenghts in cloned sheep’. Nature 399: 316-317.

Bartolomei, M.S., Tilghman, S. M. (1997). Genomic imprinting in mammals.

Annual Review Genetics 31: 493-525.

Ver Chen, W. Y., Townes, T. M. (2000). ‘Molecular mechanism for silencing virally

transduced genes involves histone deacetylation and chromatin condensation’. Proceedings

National Academy of Science U. S. A. 97: 377-382.

Ver Armstrong, L., Lako, M., Lincoln, J. Calms, P. M., Hole, N. (2000). ‘MTert expression

correlates with telomerase activity during the differentiation of murine embryonic stem cells’.

Mechanisms Development 97: 109-116; y Yoder, M. C., Hiatt, K. (1999). ‘Murine yolk sac and

bone marrow hematopoietic cells with high proliferative potential display different capacities for

producing colony-forming cells ex vivo’. Journal of Hematology Stem Cell Research 8: 421-430.

Ver Amit, M., Carpenter, M. K., Inokuma, M. S., Chiu, C. P., Harris, C. P., Waknitz, M. A.,

Itskovitz-Eldor, J., Thomson, J. A. (2000). ‘Clonally derived human embryonic stem cells lines

maintain pluripotency and proliferative potential for prolonged periods of culture’.

Developmental Biology 227: 271-278.

Ver Luther-Wyrsch, A., Costello, E., Thali, M., Buetti, E., Nissen, C., Surbek, D., Holzgreve,

W., Gratwohi, A., Tichell, A., Wodnar Fillpowicz, A. (2001). ‘Stable transduction with lentiviral

vectors and amplification of immature hematopoietic progenitors from cord blood of

preterm human fetuses’. Human Gene Therapy 12: 377-389; y Shields, L. E., Klem, H. P.

Andrews, R. G. (2000). ‘Highly efficient gene transfer into preterm CD34+ hematopoietic

progenitor cells’. American Journal Obstetrics Ginecology 183: 732-737.

Así han especulado Geathart, J. (1998). ‘New potential for human embryonic stem cells’.

Science 282: 1061-1062; y Rathjen, P. D., Lake, J., Whyatt, L. M.Bettess, M. D., Rathjen, J.

(1998). ‘Properties and uses of embryonic stem cells: prospects for application to human biology

and gene therapy’. Reproductive Fertility Development 10: 31-47.

Para una discusión científica sobre el comienzo de la vida humana ver Rodríguez, E. (1999).

‘El estatuto del preembrión, una perspectiva biológica’. Ars Medica 1: 99-108.

Pearson, H. (2002). ‘Developmental biology: Your destiny, from day one’. Nature 418: 14-




Cómo citar

Rodríguez Yunta, E. (2016). El potencial terapéutico de las células madre. Eticidad del uso de las células madre embrionarias. ARS MEDICA Revista De Ciencias Médicas, 13(3), 162–164. https://doi.org/10.11565/arsmed.v32i2.266

Artículos más leídos del mismo autor/a